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The equilibrium state of a rapidly rotating fluid, heated uniformly from above 
and cooled uniformly from below while contained in a cylinder with insulated 
side-walls is studied. 

The circulations which are produced by the resulting stratification are studied 
over a wide range of parameters and it is shown that many of the features of the 
linear theory of rotating stratified fluid flows found in earlier studies reappear 
in this non-linear problem. 

These include the gradual disappearance of Ekman layer suction and O(1) 
Ekman layers as the stratification increases, and the determination of the 
interior flow by the side-wall boundary layers in conjunction with the Ekman 
layers. 

It is suggested, therefore, that studies of rotating stratified flows which are 
unbounded laterally may frequently be defective and lead to solutions which are 
not the limit of any physically realizable experiment. 

1. Introduction 
The equilibrium state of a rotating fluid heated uniformly from above and 

cooled uniformly from below is the fundamental initial state from which many 
investigations of mechanically and/or thermally driven motions of a rotating, 
stratified fluid proceed. It is generally assumed, for example, that if the fluid is 
contained by vertically insulating walls, the resulting fluid state will be static 
relative to the rotating frame in which the container appears stationary. How- 
ever, this cannot be so; for if the fluid is rotating as a rigid body with the angular 
velocity of the container, the isolines of constant density, pressure and tempera- 
ture must be given by the equilibrium paraboloids, viz. 

z - Q2r2/2g = constant, 

where z and r are the co-ordinates respectively parallel and perpendicular to the 
rotation axis, while S2 and g are the magnitudes of the rotation and gravity 
vectors respectively, here assumed to be antiparallel. In  this static state, the 
first law of thermodynamics becomes, with the usual approximations, 

V2T = 0. 

There exists no solution of this equation for which the isotherms are equilibrium 
paraboloids. Therefore, either the temperature is constant, or the thermal dif- 
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fusivity K is identically zero, or, as must happen in a real stably stratified fluid, 
motions relative to the container’s frame are produced (Greenspan 1967). 

Since the equilibrium state is fundamental for both theoretical and experi- 
mental studies of the dynamics of rotating stratified fluids, it  is of importance to 
understand completely its characteristics as a prerequisite to a f d l  understanding 
of more complicated problems. Many theories proceed under the assumption 
that the centrifugal force is sufficiently small compared to the gravitational force 
so that the equilibrium paraboloids may be approximated by level surfaces. 
With this approximation, the basic stratification is linear and there is no result- 
ingrelative motion. Nevertheless, in any experiment some effect of the centrifugal 
force will be felt, and for rapidly rotating fluids the effect may not be negligible. 
The parameter which measures the deviation of the ‘effective ’ gravitational 
potential from a level surface is the rotational Froude number, 

F = Q2L/g, 

where L is a characteristic dimension of the container. 
In  the present paper, we propose to examine which kind of stratification 

and motions are set up in a rotating fluid by a very simple vertical differential 
heating, when the effects of the Froude number are taken into account. We shall 
examine different regimes in which heat advection and/or conduction are the 
dominant processes which estabIish the basic stratification. Of course, in the 
advection dominated regime the heat equation is non-linear. The relative sim- 
plicity of the problem is, however, such that we shall be able to obtain certain 
important results. In  fact, this provides a second motivation for the present 
analysis, namely, it will enable us to show that the results of our previous linear 
analysis (Barcilon & Pedlosky 1967a, b; hereafter referred to as B & P, I and 11) 
of rotating, stratified fluids persist into the non-linear range. In  particular, it 
appears that even in the non-linear rdgime, the diffusive processes are very im- 
portant throughout the entire fluid region. Another important feature is the 
importance of the side walls in determining the fluid motions. When the fluid is 
stratified as well as rotating, the pre-eminence of the horizontal boundaries 
(perpendicular to the rotating axis), which is the central feature of the theory of 
homogeneous fluids, is lost. The constraint of the stratification, emphasizing 
information received by the fluid from the side walls can be as important as the 
rotational constraint which so strongly transmits information from horizontal 
boundaries. Theories which ignore this feature, leaving the fluid horizontally 
unbounded may be defective in the sense that they are not the limit of any 
physically realizable situation. An example of such a defective (but attractive) 
similarity solution is given in 3 5 .  

2. Formulation 
Let the fluid be contained in a cylinder of height L and radius R, which is 

rotating about its longitudinal axis with angular velocity Q. The rotation axis is 
assumed anti-parallel to gravity. The sides of the cylinder are insulated while the 
top and bottom boundaries of the cylinder are maintained at fixed, constant 
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temperatures To + AT and To respectively, where AT is a positive constant. For 
simplicity, the fluid is assumed to be incompressible, but viscous and heat 
conducting. 

Recognizing the axial symmetry of the problem, we anticipate that all depen- 
dent variables will be functions only of r,  the distance from the rotation axis, and 
z the vertical distance measured from the lower boundary. Let u, v and w be 
the radial, azimuthal and vertical velocity components respectively, while 
p ,  p,  T are the symbols for pressure, density and temperature. We introduce the 
following non-dimensional variables, denoted by primes, 

T = To+ (AT)  T ' ,  

p = poSZ-po*(Q2r2) +poaATgLP', 
while the density is assumed to be related to the temperature by the simple 
state equation 

The parameter a is the (constant) coefficient of thermal expansion. The equations 
of motion, written in terms of the non-dimensional variables are, in the rotating 
frame (dropping the prime notation for the dimensionless variables) 

p = PO( 1 - a(A!Z') T'). 

-2v( l -€FT) = -pr-FrZ'+(l-eFT)E 

uv ,+wv ,+~)  r +2u = E(V2v-:), 

(2.1 a) 

(2.1 b )  

(1 - d ' T )  E(UW, + WW,) = -p, + T + (1 - EFT) EV'W, (2 . lc )  

( 2 . 1 4  (W (ru), + wz = 0, 

U E ( U ~ +  wT,) = EV2T, ( 2 . l e )  

where 

Explicit use has been made of the axial symmetry. Four important dimensionless 
parameters enter into the problem; they are 

E = v/sZL2, the Ekman number, 

e = aATg/Q2L, the thermal Rossby number, 

u = V / K ,  the Prandtl number, 

and F = Q2L/g, the rotational Froude number. 

The kinematic coefficient of viscosity is v, the thermal diffusivity is K. In  this 
paper, asymptotic solutions will be presented for small E and E ,  while u and F will 
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be considered O( 1)  parameters. Naturally, in the limiting cases of small E and E ,  
the results may be expected to depend strongly on the relative magnitudes of E 

and E as they formally approach zero in the asymptotic solutions. 
The boundary conditions, which complete the specification of the problem are 

aT 
-=  0 on r = r o =  RIL, 
ar 

(2-2 a )  

(2.2b) 

(u , v ,w)=O on z = 1 + 1  2 - 2 ,  ( 2 . 2 4  
and on r = ro. 

Note, that although in the limit of small E the fluid satisfies the Boussinesq 
approximation (the density variations affecting the motion only through buoy- 
ancy effects) this, in general, includes buoyancy effects in the radial as well as 
the vertical equations of motion. The traditional Boussinesq approximation in 
which the buoyancy appears only in the vertical dynamics is valid only for small 
P. In  fact, the radial component of effective gravity drives the motion in this 
case. 

3. The linear solution 
When the Rossby number, E ,  is very small the non-linear terms may be 

neglected, yielding a relatively simple linear problem whose solution illustrates 
the essential mechanism which produces the circulations seen in the rotating 
frame. 

Setting E to zero, (2.1) becomes 

-2v = -pT-FrT+E(V2u-u/r2),  

2 u  = E(V2v - v/r2),  

0 = -pa -+ T + E(V2w), 
1 
- (ru),+ wz = 0, 
r 

( 3 . l a )  

(3.1 b )  

( 3 . 1 ~ )  

( 3 . l d )  

0 = V2T. ( 3 . l e )  

From (3.1 e )  we note that in this conduction dominated limit, the problem for the 
temperature can be solved independently of the motion. The solution for T 
which satisfies (2.2a, b )  is simply 

(3.2) T = X. 

Since the temperature is therefore not constant along the isolines of the effective 
gravitational potential, motions will be produced. Note that the lines of constant 
temperature are f lat ,  and are not curved in the shape of the equilibrium para- 
boloids. This is due to the presence of a small but non-zero thermal diffusivity 
of the fluid. 

To obtain the velocity fields in the interior, outside of any boundary-layer 
region near solid surfaces, we may ignore the viscous terms proportiona.1 to E. 
This yields immediately the interior thermal wind relation for the azimuthal 
velocity, 

2v, = PrT, + T,, (3.3) 
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which with (3.2) becomes 2v, = Fr 

or v = gFrz + h(r), (3.4) 
where h(r) must be determined. 

We find similarly that u = 0, (3.5u) 

UlS = 0; (3.5b) 

these relations are valid in the interior to O(E). 
The boundary conditions (2.2~) on x = 4 & 4 are satisfied by the introduction 

of Ekman boundary layers of thickness E3 on the horizontal rigid boundaries. 
Their dynamics are exactly the same as for homogeneous fluids and impose, as 
compatibility conditions on the interior flow, (B & P, I), 

These conditions, together with (3.5b) determine the function h(r), i.e. 

h(r) = -$I+, 
so that in the interior v = &Fr(z- $), (3.74 

u = 0, (3.76) 

w = - $F E*. (3.74 

The interior azimuthal velocity is linear in z and antisymmetric about z = $ 
while on each horizontal plane the fluid rotates as a solid body. The vertical, 
interior velocity by which the fluid flows from the upper, hot plate to the lower 
cool plate is independent of r and z. The amplitude of the motion is proportional 
to the Froude number P. It is interesting to note in this limit of small tem- 
perature gradient, that the Ekman compatibility condition (3.6) completely 
determined the flow, as if the fluid were homogeneous. 

The boundary condition (2.2~)  on r = ro is satisfied through the introduction 
of a Stewartson layer of thickness Ef. The dynamics in this layer are again the 
standard homogeneous type originally described by Stewartson (1957). The 
resulting representations of the velocity fields, uniformly valid for all r outside 
the horizontal Ekman layers are 

( 3 . 8 ~ )  

where 

and 

7 = (yo  - Y) E-f ,  

1, = (37r)l. 

(3 .8~)  
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No layer of thickness Ea is required since the interior azimuthal velocity has 
zero vertical average. Recalling that F = O ( l ) ,  it is now possible to delineate 
the region of validity of this linear solution. 

In  the interior, the vertical convection of heat, ewT,, which is O(eE9) becomes 
as important as the conduction when 

Similarly the buoyancy effects will become important in the E* layer, changing 
its character, when 

CE = O(E8). (3.10) 

These are the critical values of the stratification deduced in B & P, I1 (called 
u,S therein) for linear problems where the stratification was assumed known, not 
as here, to be determined. It is interesting to see them appear again. Since 
the interior solution is given by (3 .7)  until ~e = O(E*) we shall concentrate our 
attention on the character of the solution as that critical value is attained 
and surpassed. The reader is referred to B & P, 11, for a discussion of the inter- 
esting metamorphosis of the side-wall layers as the critical stratification 

cc = O(Ef) 
is reached (which occurs first). 

We turn our attention next to the case where thermal convection is of equal 
importance in the interior as the thermal conduction and therefore where non- 
linear effects are important, i.e. when u~ = O(E4). 

4. The effect of convection; r e  = O(E4) 
4.1. The interior problem 

To investigate the nature of the solution when the effect of thermal convection 
becomes important it is convenient to introduce explicitly a relation between ue 
and E. Assuming u = O(l),  we write 

8 = hE*, (4.1) 
where h is an O( 1) constant. 

To determine the interior equations of motion, (4.1) is inserted into (2.1), and 
the variables appearing in the resulting equations are expanded in the following 
asymptotic series, presumed valid outside boundary-layer regions. 

1 u = Eu,+ ..., 

I v = v,+Efrv,+ ..., 

I w = E ~ w , +  ..., 

J T = T,+E*T,+..., 

p = po+E*p1+ .... 
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Inserting (4 .2)  into the equations of motion and expanding the result in powers 
of E?t we obtain 

( 4 . 3 4  2v0 = zo aP + rToP, 

(4 .3b )  

( 4 . 3 4  

UAW,T, = V2To ( 4 . 3 4  

and the derived thermal wind relation 

(4 .3e)  

The non-linear nature of the problem is revealed by ( 4 . 3 4 ,  which serves as the 
determiningequation of motion. The vertical convection of heat alters the purely 
conductive state derived in $3.  Since w1 is independent of z, this vertical con- 
vection is accomplished by the Ekman layer suction velocity, which as before is 
given by the relation 

w1 = T---(rvo)  on z = J-+J-  2 - 2,  ( 4 . 4 4  
1 1 8  
2 r  ar 

obtained by studying the Ekman layers needed to satisfy the kinematic boundary 
conditions ( 2 . 2 ~ )  on the horizontal bounding surfaces. Another consequence of 
a perusal of the characteristics of the Ekman layer (which is the only possible 
horizontal boundary layer in this parameter region) is that the Ekman layer 
corrections to the temperature field are at most of O(E), so that the interior 
temperature must satisfy the conditions 

To=3-t-& on z = & + & .  (4 .4b)  

Integrating (4 .3e)  from z = 0 to z = 1, yields, with the application of (4 .4a )  
and (4 .4b)  

where 

(4 .5)  

The governing equation ( 4 . 3 4 ,  rewritten in terms of only the temperature, is 

To complete the problem, boundary conditions for (4.6) to be applied on r = ro, 
must be deduced by matching the boundary condition (2 .2b )  to the interior 
through the application of the dynamics of the side-wall boundary layers. 
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4.2. The side-wall layers 

The side-wall boundary layer, in the case when ae  = O(E4) has a double structure, 
similar to that described in B & P, I1 (a triple structure was in general observed 
there, two of the sublayers merging when the equivalent condition aS = O(Et) 
occurred). The outer layer has a thickness of O(Eg) (a combination of the E* and 
hydrostatic layers found in B & P, 11), and is a baroclinic generalization of the 
Stewartson E* layer, while the inner sublayer has a thickness of 

O(E4s-t) = O(E*), 

and is a generalization of the buoyancy layer described in B & P, 11. 
In the outer layer the representation of the dependent variables is 

where 

v = vo(r0,x)+3(7,z)+ ..., 
u = E h ( 7 ,  z), 
w = E b ( 7 p ) + * . . ,  

P = POP09 4 +@F (%4 f . .., 
T = To(ro,x)+EfT(7,z) ..., 

7 = ( ro - r )  E-g, 

(4.7) 

and the boundary-layer corrections to the interior flow are denoted by bars. 

which must vanish as 7 + co are 
Inserting (4.7) into (2.1), the equations for the boundary-layer corrections 

- 
2v = -$11 25 = vql], p ,  = T, 
5 = W,, aAWTo,(ro,z) = !i&. 11 

Eliminating all variables in favour of V we obtain, as the governing boundary- 
layer equation 

-+---= 0 a2v a 1 av 
a72 a Z 1 4 a z  ' (4.9) 

where 14(z) = &AT,(r, z) .  

The boundary conditions for (4.9) on x = 0 and 1 can be found by applying the 
Ekman layer compatibility condition (3.6) to the boundary-layer variables. This 
is a valid procedure because the Ekman layer is much thinner than the E)layer. 
This yields 

_ -  - + P E  on x = + + + .  (4.10) 
av - 
ax 

To solve (4.9) subject to (4.10) we write 
00 

;is = Cne-kn? Fn(z), (4.11) 
n=O 

which produces the Sturm-Liouville problem for ( va, En) : 

- + 1 4 K  on z = 1 + 1  2 - 2'  
d K  - 
dz 

(4.12) 

(4.13) 
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As long as 14(z) > 0, which implies that the fluid is stably stratified, the eigen- 
value problem is non-singular and by the usual Sturm-Liouville theorems (4.12) 
and (4.13) possess a complete set of solutions, which can be used to represent any 
function of z .  It can also be shown that 

u = E h +  ...+ E&(x,z)+ ..., 
w = E ~ & ( X ,  X )  + . . . , 
T = To(ro,z) + E@+ . . . + E@(x,z) +. . ., 

(4.14) 

so that all solutions to (4.9) are exponential in 7 and of boundary-layer type. 
In  terms of the solutions of (4.12) (which cannot be explicitly determined until 
Toz(ro, z )  is known, i.e. the interior problem solved) the boundary-layer variables 
may be written 

(4.15) 

where, naturally, the positive square root of the eigenvalue lc; is used to define 
k,. The constants C, will be determined in terms of the interior azimuthal velo- 
city by matching the side-wall condition w = wo + V = 0 on r = ro. 

It will be convenient to have explicitly a relation for the stream function 
3 of the boundary-layer meridional motion. Since roE = $= and row = pv this 
can be obtained from (4.15): 

- 

(4.16) 

Within the inner side-wall layer, the bouyancy layer,? where ( r  - ro)  = O(EQ), 
another correction to the field representations is required. In  this region we write 

(4.17) 

where the caret denotes the boundary-layer corrections in the buoyancy layer 

x = (ro - r )  E-9 which must vanish as 

becomes large. 

-f This terminology, which was used in our previous paper, is due to Veronis (private 
communication). 
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functions are obtained, i.e. 
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By inserting (4.17) into (2.1), equations for the buoyancy layer correction 

20 = - $,, 

(4.18) 

These equations are essentially the same as those found in B & P for the case 
of the linear dynamics, with the important exception that now q ( r , , z )  is not 
explicitly known. Nevertheless, it is important to note that the qualitative nature 
of the dynamics of the side-wall layer found in the linear problem also holds in 
this non-linear case. The set of equations (4.18) may be solved subject to the 

boundary condition 8(0) = 0. 

This is required since w = 0 on r = r,, and the buoyancy layer correction to 
w swamps the E! and interior contributions to w at the wall. The solutions for the 
buoyancy-layer corrections are 

(4.19 a )  

(4.19b) 
21 

YO 
8 = - - A,(z) sin lx e-b, 

(4.19 c) 

while the correction to  the stream function $ for the meridional motion is 

where a = rcl gB, t2 = r r 1  GX, and l4 = &hToz(ro, 2). 

$ = A ,  e-lx (cos zx + sin ZX), (4.19d) 

To determine the boundary condition on the interior flow at r = r,, as well 
as the Cn7s and A,, we must now apply the side-wall boundary conditions. The 
no-slip condition on w has already been satisfied by the buoyancy layer. The 
no-slip conditions on the azimuthal velocity yields 

v0+3=O on r = r o ,  

or 

i.e. (4.20) 

so that once IJ, is known, i.e. the interior problem solved, C, is determined. 

ment that r = r,, be a streamline of the total meridional motion, i.e. that 
The condition u = 0 on r = ro is more conveniently satisfied as the require- 

(4.21) 

where @I = J ' rw dr. 
0 
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The condition that the side-wall be insulated is 
- 

T , - T , - @ ~ = o  on r = r o .  (4.22) 

By integrating the heat equation across the side-wall layer, i t  can be shown 

T!!+Pz=-($+$) on r = r o .  (4.23) 

Thus on r = ro, we find, using (4.21) and (4.22), the boundary condition for the 
interior flow 

that 
414 - 

TO 

414 
-$I+T,=O on r = r W  
YO 

(4.24) 

Since 

(4.5) may be used to express (4.24) entirely in terms of the temperature field, viz. 

(4.25) 

which is the most suitable form for the side-wall boundary condition for To. 
Equation (4.7), together with (4.4b) and (4.25) sets the problem for To. No general 
solution to this problem has been found, but an approximate solution, valid for 
P < 1 (but much greater than E:) can be found as follows. 

For small P let 
To = z+FB, 

Then 0 satisfies the following equation and boundary conditions to O(P) 

(4.26 a)  

0 = 0  on z = O , l ,  (4.26b) 

If we define 

then 

ahr, 
(8+gh) 

0, = -___ on r = ro. 

chro 
8 

7 =--- on r = ro, 

Once r is found, B may be obtained from the relation 

( 4 . 2 6 ~ )  

(4.27 a)  

(4.2 7 b)  

(4.28) 
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ul = 1.0 

z 

r+ 

(b )  
UA = 1000 

z 

-0.03 

-001 

r-+ 

(c) 
FIGURE 1. The upper portion of the figure shows lines of constant 8 in the region t < z < 1. 
The lower portion of the figure shows lines of constant. w,,F-l in the region 0 < z < 4. 
Note that 8 is symmetric about z = + while wo is antisymmetric. (a )  CTA = 1, ( 6 )  CTA = 100, 
(c) ah = 1000. r, is taken equal to 2. 
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The solutions for 8, w, and w1 can easily be found to be 

( x  - 4) -- ah - 2r, sinh.$]] 

k, ah 2r0 kn , 
cosh -- - - - sinh - 

2r, ah+8 k, 2r, 

rh+8 lc, 

(4.29) 
r 8 
2 ah+ 8 

21, = P-(2 -* ) -  

and 

(4.31) 

The series for 8, vo and w1 were summed numerically; lines of constant 8 and wo 
for values of ah equal to 1.0,lOO and 1000 are displayed in figure 1. The vertical 
veIocity for these values of ah is displayed in figure 2. Figure l a  corresponds 
essentially to the conduction dominated r6gime. As the advection becomes more 
important the temperature profile is distorted by the vertical motion and the 
temperature field acquires a more pronounced radial structure, as implied by the 
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condition (4.25) In  fact the cold fluid which is flushed up through the side-wall 
layers cools the interior slightly, especially near the side-walls, as is evident from 
figures 1 b and 1 c. Note that the O( 1) azimuthal velocity remains antisymmetric 
about x = 4, but its radial and vertical structure becomes more complicated in 
response to the cool side-wall layers which reduce the azimuthal velocity by 
thermal wind effects. It is also interesting to note (figure 2) how the magnitude 
of the vertical, interior velocity is reduced with increasing ah, i.e. increasing 
stable stratification. 

Now that vo and To are known the side-wall layer constants C, and the function 
Ao(z)  can be determined. For the sake of brevity they are not presented here. 

5. The convection dominated rkgime 6 8  % EB 

It would appear that as the Rossby number 8 is increased the effect of the 
thermal convection would dominate the effects of thermal conduction. In  fact 
this is not the case; thermal conduction remains important throughout the $uid 
for all 6. Before discussing this surprising result in more detail, it  is of interest to 
note the existence of a similarity solution to (2.1) which is valid over a wide 
range of m, 

Writing 
w = E*w,+ ..., u = O(E), T = To+ ..., p = po+ ..., 

and specifying that w1 is a constant and To is independent of r we find 

yielding ( 5 . 1 ~ )  

where /3 = - w,ae/E*. Matching the Ekman compatibility conditions yields 

w1 = - LF 4 3  (5.lb) 

( 5 . 1 ~ )  

This similarity solution, valid outside the Ekman layers is a possible solution 
to the complete problem in the absence of any containing side-wall boundary, 
and is similar to the one found in a slightly different context by Duncan (1966). 
The solution has the following interesting properties. For small m/Eb the simi- 
larity solution (5.1) reduces to the interior solution found in 93. For large ae/Eh 
the solution becomes more asymmetric in z and finally achieves a state wherein 
the bulk of the region 0 < z < 1 consists of a homogeneous fluid with a tempera- 
ture equal to that of the upper boundary which is swept down to within a distance 
of O(E*/ac) of the lower boundary where a thermal boundary layer (where con- 
duction is important) matches this homogeneous interior to the lower boundary 
temperature. The azimuthal velocity shares a similar asymmetric distribution in 
x for large aelE9. Thus for large as/E* the similarity solution is convection 
dominated. 
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The similarity solution is at once so simple and intuitive that several futile 
attempts were made by us to use it as an interior solution and effectively enclose 
i t  in a finite cylinder by adding appropriate side-wall boundary layers. It became 
clear, however, that the presence of the side-wall boundaries eliminated the rele- 
vance, not only of the details of the solution, but that the dynamics of the motion 
in a closed region was essentially different from that inferred from the similarity 
solution. The similarity solution is not the limiting solution of a physically 
realizable experiment in a closed container, even with a large radius. 

There are many ways of seeing this. First, it  is not formally possible to join the 
similarity solution to the side-wall boundary condition through the use of side- 
wall layers. Alternately, it may be noted that in a finite region the fluid must 
return through the side-wall layers and the intense stable stratification produced 
in the thermal layers near z = 0 of the similarity solution effectively prevents this, 
choking off the meridional circulation required by the similarity solution. In  

m / E *  

1 -. 

10 20 30 40 50. 
I I I 1 I I 

Asymptotic theory (an * 1) 

FIGURE 3. -, vertical interior mass transport; - - -, results from the linear 
and the asymptotic analysis. 

addition, in a closed region insulated at the side-walls, the total heat flux, con- 
ductive plus convective, must be independent of x .  The similarity solution implies 
that the upper boundary covers essentially homogeneous fluid, resulting in the 
contradiction that no heat is flowing from z = 1, where T = 1 to x = 0, where 
T = 0. For all these reasons, the similarity solution is defective and dynamical 
conclusions drawn from it are generally invalid, primarily because the effects 
of the side-wall layers are ignored, and by choking off the meridional flow they 
control the dynamics of the entire interior. It is important to note that if the 
similarity solution were correct, each streamline would pass through the side- 
wall layers. 

Finally, by integrating ( 2 . l e )  over the volume of the fluid and explicitly 
balancing the net heat flux on the planes at  z = 1 and z = 0 we find that the total 
vertical interior flux M is 

FEH 
(8 + ac/E&) 

For large ac/E* this flux falls to O(E/as) which is much smaller than that needed 
for the validity of the similarity solution (see figure 3). 
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A consistent dynamical picture for the case ue + E4 emerges then, as follows. 
As opposed to the similarity scaling we write, for the interior variables 

1 w = E / ( T E w ~ ,  w = w,+ ..., u = O(E), 

T = To+ ..., p = p o +  .... (5.3) 

Inserting (5.3) into (2.1) yields 
2% = Po, + r i q l z ,  ( 5 . 4 ~ )  

0 = PO2+ To, (5 .4b )  

wlTOz = Q2To, (5.4c) 

W b  = 0. ( 5 . 4 4  

Using ( 5 . 4 4  we obtain the governing equation by differentiating ( 5 . 4 ~ )  with 
respect to z ,  and then using (5 .4b)  we find that 

POzzV2PO,2 - Q 2 P o z ~ 0 2 z z  = 0,  (5 .5)  

which is the non-linear generalization of the equation found in B & P, I, for the 
case of substantial stratification. The boundary conditions on z = 0 and 1 are 
of interest. Since the interior vertical velocity is O(E/e)  < Et ,  the Ekman com- 
patibility condition, (3.6) requires that 

Since the region is simply connected, no non-singular solution of (5 .6)  exists 
except the solution v O = O  on z = & * $ .  

The interior solution therefore satisfies the no slip condition on z 7 0 , l  and 
no O( 1) Ekman layers are required. This was one of the central results we found 
in the linear dynamics of heavily stratified fluids. It is interesting to  note that 
the non-linearity, which allows, a priori, the fluid to select its own local strati- 
fication, does not alter this important result. Rather, the over-all stratification 
is essentially found throughout the fluid, reducing the magnitude of the secondary 
circulations, re-introducing the effects of dissipation into the interior, even for 
substantial values of the Rossby number. 

poz=$-t-i on z = l + l  (5.7a) Thus 

par= 0 on z = 0, (5 .7b)  
2 - 2 ,  

pop  = -rP on z = 1. (5.7c) 

Proper conditions on the interior problem on r = ro are found by considering 
the dynamics of the side-wall boundary layers. Their structure is similar to the 
linear examples in (B & P, 11) and the layers displayed in $4. 

There is an inner buoyancy layer of thickness E9e-k in which the vertical 
transport matches the interior flux, and a baroclinic, hydrostatic layer with ZL 

thickness €4. The dynamics of the latter is the same as the Eg layer described in 
$ 4 ,  and in fact coincides with it when m = O(E4). For the sake of brevity, and 
because the dynamics of the layer is essentially the same as in the case ue = O(Et)  
the details are omitted. 



Steady motions produced by a stable stratijcation 

The boundary condition on the interior flow derivable from 
interior flow to the side-wall conditions through the side-wall 
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matching the 
layers can be 

and is similar to (4.24). Using (5.2) (after noting the rescaling of w), in the limit 
of large crelE*, we obtain 

-0 - aT0 
ar az 

- - r o F -  on r = r o ,  
aT 

(5.9) 

to which (4.25) tends for large crA. Thus the equilibrium paraboloidal slope is 
attained on r = r, for the interior solution for large cre/E*. In  terms of p ,  this con- 
ditionis 

(5.10) 

which completes the specification of the interior problem. 
Although the dynamical nature of the flow is clear the detailed solution of 

(5.5) subject to (5-6) and (5.10) is analytically intractable. For the purpose of 
obtaining detailed results we once again investigate the case of moderately 
small F .  It is not necessary to produce any detailed calculations, for it was found 
that the solutions obtained were directly obtainable from (4.29) and (4.30) by 
letting crA +. co. The interior solution is therefore continuous in the parameter 
oe/Et  which again is aresult qualitatively similar to what we foundin (B & P, 11), 
and completely different from the situation suggested by the similarity solution. 
Finally, it is interesting to note that the various physical fields exhibit certain 
symmetries as opposed to the similarity solution. 

6. Conclusions 
When a rotating fluid is heated uniformly from above and cooled uniformly 

from below, steady circulations are produced in response to the departure of 
the isolines of the 'effective ' gravitational potential from the isotherms, whose 
configuration is determined to a large degree by thermal diffusion. 

It was shown that the presence of the side-walls plays an important role in 
determining the flow once the imposed stratification becomes sufficiently large. 
In  this limit the rotational constraint and the Ekman layer suction no longer 
dominate the flow. 

Further, although through non-linear effects the fluid may adjust its own 
stratification locally, the nature of the dynamics, is, in each parameter region 
investigated, essentially the same as the linear dynamics found by us when the 
stratification was imposed throughout. This suggests that many features of the 
general linear theory may be observed in experiments in which non-linear 
effects are not negligible. One of the most important of these features is the 
disappearance of the Ekman layer in a substantially stratified fluid. 
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